

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

TEMA 1: INTRODUCCIÓN A LA DINÁMICA

ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

TEMA 1: INTRODUCCIÓN A LA DINÁMICA

Contenido:

- 1. Introducción a la Dinámica.
- Movimiento rectilíneo de partículas.
- Expresiones generales para la determinación del movimiento de una partícula.
- 4. MRU y MRUA.
- 5. Movimiento de un proyectil.
- Movimiento curvilíneo de partículas: Vectores de posición, velocidad y aceleración.
 - 6.1 Componentes Rectangulares.
 - 6.2 Componentes Tangencial y Normal.
 - 6.3 Componentes Radial y Transversal.
 - 6.4 Generalización del movimiento de una partícula en el espacio (Coordenadas cilíndricas).
- Movimiento de varias partículas.

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en componentes Tangencial y Normal

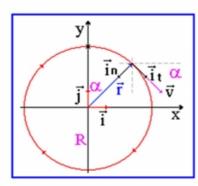
Algunas veces es conveniente definir la velocidad y aceleración de una partícula utilizando componentes en las direcciones **tangencial** y **normal** a la trayectoria de la partícula.

Esto es porque la velocidad de una partícula, es un vector tangente a la trayectoria, pero en general la aceleración no lo es, así que resulta útil transformar el vector aceleración en componentes dirigidas a lo largo de la tangente y normal a la curva descrita por la partícula.

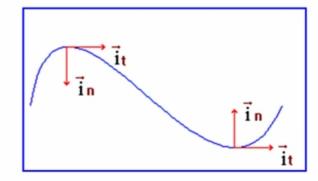
ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en Componentes Tangencial y Normal a. Movimiento de una partícula en el plano



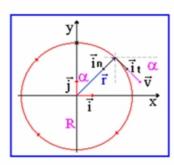
VECTOR DE POSICIÓN

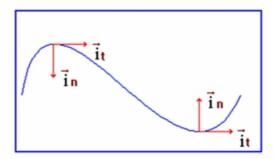


$$r = -ri_n$$

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en Componentes Tangencial y Normal a. Movimiento de una partícula en el plano





VECTOR VELOCIDAD

$$\overline{V} = v \overline{i}_t$$

Donde i_t es el vector unitario en la dirección $\underline{\mathit{Tangencial}}$.

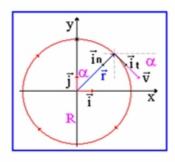
Cómo es el vector de la dirección *Normal*, y cuál es su módulo?

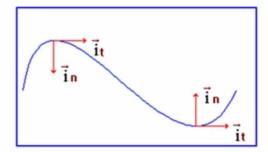
ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en Componentes Tangencial y Normal a. Movimiento de una partícula en el plano





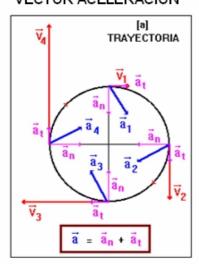
$$\frac{d\vec{i}_t}{d\theta} = \vec{i}_n \rightarrow \text{Vector unitario en la dirección Normal}$$

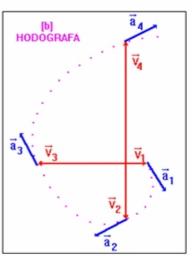
 $\dot{l}_t
ightarrow extsf{Vector unitario en la dirección Tangencial}$

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en Componentes Tangencial y Normal a. Movimiento de una partícula en el plano

VECTOR ACELERACIÓN





ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

Sustituyendo en la aceleración:

$$\bar{a} = \frac{dv}{dt}\bar{i}_t + v\frac{d\bar{i}_t}{dt}$$

$$\bar{a} = v\bar{i}_t + v\frac{v}{\rho}\bar{i}_t$$

$$\bar{a} = v \, \bar{i}_t + \frac{v^2}{\rho} \, \bar{i}_n$$

 $a_t = v \rightarrow$ Aceleración tangencial (Puede ser de valor positivo o negativo)

$$a_n = \frac{v^2}{\rho} \rightarrow \text{ Aceleración Normal (Siempre positiva)}$$

Magnitud de la aceleración:
$$a = \sqrt{a_{\rm t}^2 + a_{\rm n}^2}$$

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

Observaciones:

Considerando dos casos especiales, uno donde la partícula se mueve a lo largo de una línea recta y otro donde se mueve por una curva con rapidez constante:



ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

Observaciones:

Si la ecuación de la curva plana está dada en coordenadas cartesianas: y = f(x), el radio de curvatura es:

$$\rho = \frac{[1 + (dy/dx)^2]^{3/2}}{|d^2y/dx^2|}$$

Tarea: Investigar otras expresiones para el cálculo del radio de curvatura, en función de la velocidad y la aceleración de la partícula.

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.2 Movimiento curvilíneo de partículas en componentes Tangencial y Normal

RESUMEN

$$\overline{r} = -r \overline{i}_n$$

$$\overline{V} = v \overline{i}_t$$

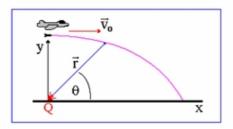
$$\overline{a} = v \overline{i}_t + \frac{v^2}{\rho} \overline{i}_t$$

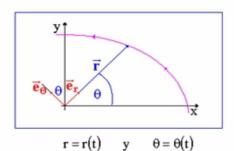
ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal

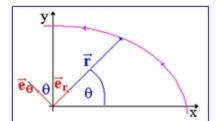
Podemos escribir los vectores velocidad y aceleración en función de dos componentes: una, paralela o en la dirección del radio de la trayectoria llamada **componente radial**, y la otra, perpendicular al radio en el punto estudiado, llamada **componente transversal**.





MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal



 $\overline{\dot{l}}_{r}$. Vector unitario en la dirección radial

 $\overline{\dot{l}}_{m{ heta}}$. Vector unitario en la dirección transversal

$$\bar{i}_r = \cos \theta \, \bar{i} + sen \theta \, \bar{j}$$

$$\bar{i}_{\theta} = -sen \ \theta \ \bar{i} + \cos \ \theta \ \bar{j}$$

$$\frac{d\bar{i}_r}{d\theta} = -sen \theta \, \bar{i} + \cos \theta \, \bar{j} \Rightarrow \frac{d\bar{i}_r}{d\theta} = \bar{i}_\theta$$

$$\frac{d\bar{i}_\theta}{d\theta} = -\cos \theta \, \bar{i} - sen \theta \, \bar{j} \Rightarrow \frac{d\bar{i}_\theta}{d\theta} = -\bar{i}_r$$

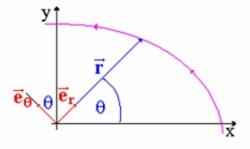
ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal VECTOR POSICIÓN

$$\bar{r}=r\bar{i}_r$$



MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

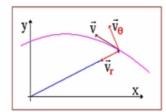
6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal VECTOR VELOCIDAD

$$\overline{V} = r \, \overline{i}_r + r \, \overset{\bullet}{\theta} \, \overline{i}_{\theta}$$

$$Vr = r \rightarrow Velocidad radial$$

$$V_{\theta} = r \stackrel{\bullet}{\theta} \rightarrow \quad \text{Velocidad transversal.}$$

$$\dot{\theta} = \left[s^{-1} = \frac{rad}{s} \right] \to_{\text{Velocidad Angular.}}$$



$$V = \sqrt{Vr^2 + V\theta^2}$$

Vr representa la variación de la magnitud con respecto al tiempo. Vθ representa la variación de la dirección del movimiento de la partícula.

ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal VECTOR ACELERACIÓN

$$\frac{\overline{a}}{a} = \frac{d\overline{v}}{dt}$$
 Recordando que $\overline{V} = r\overline{i}_r + r\overline{\theta}\overline{i}_\theta$

$$\overline{a} = \begin{pmatrix} \cdot \cdot \\ r - r \theta^2 \end{pmatrix} \overline{i}_r + \begin{pmatrix} 2 r \theta + r \theta \\ \overline{0} \end{array} \right) \overline{i}_{\theta}$$

$$a_r = \begin{pmatrix} \bullet \bullet & \bullet & ^2 \\ r - r & \theta \end{pmatrix} \rightarrow$$
 Aceleración Radial

$$a_{\theta} = \left(\begin{array}{ccc} 2 \stackrel{\bullet}{r} \stackrel{\bullet}{\theta} + r \stackrel{\bullet}{\theta} \end{array} \right) \longrightarrow \quad \text{Aceleración Transversal}$$

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.3 Movimiento curvilíneo de partículas en Componentes Radial y Transversal

RESUMEN

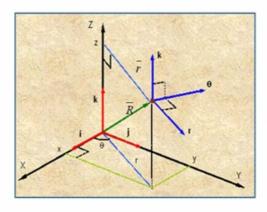
$$\begin{split} & \overline{r} = r\overline{i}_r \\ & \overline{V} = r\overline{i}_r + r\frac{\dot{\theta}}{i_{\theta}} \\ & \overline{a} = \begin{pmatrix} \ddots & \ddots \\ r - r\frac{\dot{\theta}}{\theta} \end{pmatrix} \overline{i}_r + \begin{pmatrix} 2r\frac{\dot{\theta}}{\theta} + r\frac{\dot{\theta}}{\theta} \end{pmatrix} \overline{i}_{\theta} \end{split}$$

ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.4 Generalización del movimiento de una partícula en el espacio (Coordenadas cilíndricas)

Vectores unitarios en Coordenadas Cilíndricas:



Para este caso se considerará el movimiento adicional en el eje z perpendicular al plano de coordenadas (r,θ) .

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.4 Generalización del movimiento de una partícula en el espacio (Coordenadas cilíndricas)

VECTOR POSICIÓN

$$\overline{R} = r\overline{i}_r + z\overline{k}$$

VECTOR VELOCIDAD

$$\overline{v} = \frac{d\overline{R}}{dt} = r\overline{i}_r + r\theta\overline{i}_\theta + z\overline{k}$$

$$\overline{v} = v_r\overline{i}_r + v_\theta\overline{i}_\theta + v_z\overline{k}$$

Vr, $V\theta$ y Vz son las componentes escalares de en las direcciones radial, transversal y axial respectivamente.

ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.4 Generalización del movimiento de una partícula en el espacio (Coordenadas cilíndricas)

VECTOR ACELERACIÓN

$$\bar{a} = \frac{d\bar{v}}{dt} \qquad \bar{v} = r\,\bar{i}_r + r\,\dot{\theta}\,\bar{i}_\theta + z\,\bar{k}$$

$$\vec{a} = \begin{pmatrix} \mathbf{e} & \mathbf{e}^2 \\ r - r\theta \end{pmatrix} \vec{i}_r + \begin{pmatrix} \mathbf{e} & \mathbf{e} & \mathbf{e} \\ r\theta + 2r\theta \end{pmatrix} \vec{i}_\theta + z\vec{k}$$

$$\vec{a} = a_r \vec{i}_r + a_\theta \vec{i}_\theta + a_z \vec{k}$$

a_r, **a**_e y **a**_z son las componentes escalares de en las direcciones radial, transversal y axial respectivamente.

MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

6.4 Generalización del movimiento de una partícula en el espacio (Coordenadas cilíndricas)

RESUMEN

$$\begin{split} \overline{R} &= r \overline{i}_r + z \overline{k} \\ \overline{v} &= v_r \overline{i}_r + v_\theta \overline{i}_\theta + v_z \overline{k} \\ \overline{a} &= a_r \overline{i}_r + a_\theta \overline{i}_\theta + a_z \overline{k} \end{split} \qquad \begin{aligned} \overline{v} &= r \overline{i}_r + r \overset{\bullet}{\theta} \overline{i}_\theta + \overset{\bullet}{z} \overline{k} \\ \overline{a} &= \left(\overset{\bullet}{r} - r \overset{\bullet}{\theta}^2\right) \overline{i}_r + \left(\overset{\bullet}{r} \overset{\bullet}{\theta} + 2 \overset{\bullet}{r} \overset{\bullet}{\theta}\right) \overline{i}_\theta + \overset{\bullet}{z} \overline{k} \end{split}$$

ING. MARIÁNGEL PÉREZ GUERRERO

UNIVERSIDAD DE LOS ANDES FACULTAD DE INGENIERÍA MECÁNICA RACIONAL 20 - TEMA 1: INTRODUCCIÓN A LA DINÁMICA

BIBLIOGRAFÍA

FERDINAND P. BEER Y E. RUSSELL JOHNSTON.

MECANICA VECTORIAL PARA INGENIEROS. DINAMICA. MCGRAW-HILL

R.C. HIBBELER

MECANICA VECTORIAL PARA INGENIEROS. DINÁMICA. DECIMA EDICION. PEARSON, PRENTICE HALL.

RAMON PUELLO

LECCIONES ELEMENTALES DE DINAMÍCA. FACULTAD DE INGENIERÍA. ULA.

